Math and Science with a Helium Balloon

Students will learn about motion and forces while experimenting with a helium balloon.

Grade Level: 9-12
Ohio Learning Standards/Science (2018)
Expectation of Learning
Nature of Science
High School: Physical Science
PS.FM.1: Motion
PS.FM.2: Force
PS.FM.3: Dynamics
High School: Physics
Motion
P.M.1: Motion Graphs
P.M.2: Problem Solving

Forces, Momentum \& Motion
P.F.2: Gravitational force \& fields
P.F.5: Air resistance \& drag

Energy

P.E.1: Gravitational potential energy

Ohio Learning Standards/Mathematics (2017)

Number \& Quantity Standards(-vectors)
N.Q.1: Use units as a way to understand problems
N.Q.3: Choose a level of accuracy
(+) N.VM.1: Recognize Vector Quantities

Algebra

A.SSE.1: Interpret expressions
A.REI.1: Explain each step in solving an equation
A.REI.3: Solve linear equations and inequalities

Materials Required:

- 1 balloon for each lab group
- Helium tank (contact a local supplier)
- String, plastic trash bags, masking tape
- Index cards ($1^{\text {st }}$ day)
- Colored construction paper ($2^{\text {nd }}$ day)
- Calculators, rulers, scissors
- Large paper clips and metal weights
- Triple beam balance, stopwatches

Procedure

A. Warm-up

1. Review the concept of buoyancy and gravity and how they will not be at equilibrium in the contest.
2. Go through the process of finding the area density of a piece of notebook paper.
3. Demonstrate how to determine the upward force of a balloon.
4. Explain the rules for the race and announce the prize for the winning group.
5. Remind the student that helium is escaping through the skin of the balloons so the upward force is always changing. To reduce the loss of helium, try not to handle the balloon or let it touch the surface of any object.

B. Activity

1. Determine the net upward force exerted by the helium filled balloon to which a string and paper clip are attached. A paper clip is at the end of the string exactly 50 cm from the balloon.
2. Put a known mass on a balance. Then attach the balloon to the mass on the balance with the paper clip. The difference between the mass alone and the mass attached to the balloon is the upward force.
3. Determine the area density of the index card that you will be using for a weight. Area density is equal to the mass of the card divided by its area. Record the area in $\mathrm{g} / \mathrm{cm} 2$.
4. Calculate the amount of paper needed to construct a weight which, when attached to the balloon, can be lifted by the balloon. It is suggested that you take $90-99 \%$ of the upward force to ensure a slow rise. Try different percentages of the upward force for the downward force.
5. Construct the weight from the assigned material and verify its mass by using the balance. Paper weights may be bent into any shape. A flat edge must be provided so that it can be attached to the paper clip.
6. If the weight falls from the clip during the rise of the balloon, the student will be permitted to restart the rise.
7. Attach the weight to the paper clip and touch the paper to the floor. On a signal from the timer release the paper and balloon. No rise time points will be given if:
a. The assembly fails to rise.
b. The balloon does not touch the ceiling within four minutes.
c. The paper touches the floor after the release.

C. Wrap-up

1. After each lab group has had a turn in the race, complete the data table. Make sure that calculations are correct.
2. Record each group's rise time on the board. Announce the winners (the team with the slowest rise time).

Assessment/Evaluation:

Students will turn in one data sheet per lab group. They will be evaluated by the rise time and the accuracy of calculations.

Extensions:

1. Draw a vector diagram of the forces involved in their balloonrise.
2. Calculate the speed of their balloon. Calculate a class mean.
3. What could you do to make the rise time better (i.e. slower)?
4. What problems did you have with the calculations?

Resources/References:

Helium/Helium Balloons:
https://www.livescience.com/55358-unusual-facts-about-helium.html
https://www.sciencekids.co.nz/sciencefacts/chemistry/helium.html
https://www.chemicool.com/elements/helium-facts.html
Archimedes' Principle:
https://physics.weber.edu/carroll/archimedes/principle.htm
https://courses.lumenlearning.com/boundless-physics/chapter/archimedes-principle/

Helium Balloon Race

Names: \qquad

Lab Group \# \qquad

Balloon Race		$\mathrm{cm}{ }^{\wedge} 2$
Area of paper material - one piece (length x width)	g	
Mass of paper material - one piece	$\mathrm{g} / \mathrm{cm}^{\wedge} 2$	
Area density of paper material - one piece (mass/area)	g	
Upward fore of the balloon (mass of the metal weight minus the mass of the weight attached to the balloon)	g	
Mass of the paper used for a downward force attached to the balloon	cm ^2	
Area of paper used for the downward force (mass of paper divided by the area density)	seconds	
Rise time		

